Answer:
See step-by-step explanation below
Step-by-step explanation:
This problem is solved using the Euclidean algorithm; to prove that the integers 8n + 3 and 5n + 2 are relative prime we have to prove that:
gcd(8n + 3, 5n + 2) = 1
gcd (8n + 3, 5n + 2) = gcd (3n + 1, 5n + 2) = gcd (3n + 1, 2n + 1) = gcd(n, 2n + 1) = gcd(n,1) = 1
⇒gcd(8n + 3, 5n + 2) = 1