Respuesta :

Answer:

The general solution of the differential equation y' + 3x^2 y = 0 is:

[tex]y=e^{-x^3+C}[/tex]

Step-by-step explanation:

This equation its a Separable First Order Differential Equation, this means that you can express the equation in the following way:

[tex]\frac{dy}{dx} = f_1(x)*f_2(x)[/tex], notice that the notation for y' is changed to [tex]\frac{dy}{dx}[/tex]

Then you can separate the equation and put the x part of the equation on one side and the y part on the other, like this:

[tex]\frac{1}{f_2(x)}dy=f_1(x)dx[/tex]

The Next step is to integrate both sides of the equation separately and then simplify the equation.

For the differential equation in question y' + 3x^2 y = 0 the process is:

Step 1: Separate the x part and the y part

[tex]\frac{1}{y}dy=3x^2}dx[/tex]

Step 2: Integrate both sides

[tex]\int\frac{1}{y}dy=\int 3x^2}dx[/tex]

Step 3: Solve the integrals

[tex]Ln(y)+C=-x^3+C[/tex]

Simplify the equation:

[tex]Ln(y)=-x^3+C[/tex]

To solve the Logarithmic expression you have to use the exponential e

[tex]e^{Ln(y)}=e^{-x^3+C}[/tex]

Then the solution is:

[tex]y= e^{-x^3+C}[/tex]