The gauge pressure in your car tires is 2.40 x 10^5 N/m^2 at a temperature of 35.0°C when you drive it onto a ferry boat to Alaska. What is their gauge pressure (in atm) later, when their temperature has dropped to −42.0°C? (Assume that their volume has not changed.)

Respuesta :

Answer:

The gauge pressure is [tex]1.8\times10^{5}\ N/m^2[/tex]

Explanation:

Given that,

Gauge pressure of car tires [tex]P_{1}=2.40\times10^{5}\ N/m^2[/tex]

Temperature [tex]T_{1}=35.0^{\circ}C = 35.0+273=308 K[/tex]

Dropped temperature [tex]T_{2}= -42.0^{\circ}C=273-42=231 K[/tex]

We need to calculate the gauge pressure P₂

Using relation pressure and temperature

[tex]\dfrac{P_{1}}{T_{1}}=\dfrac{P_{2}}{T_{2}}[/tex]

Put the value into the formula

[tex]\dfrac{2.40\times10^{5}}{308}=\dfrac{P_{2}}{231}[/tex]

[tex]P_{2}=\dfrac{2.40\times10^{5}\times231}{308}[/tex]

[tex]P_{2}=180000 = 1.8\times10^{5}\ N/m^2[/tex]

Hence, The gauge pressure is [tex]1.8\times10^{5}\ N/m^2[/tex]