Answer:
h = 0.204 m
Explanation:
given data:
radius r = 0.131 m
mass m = 9.86 kg
density of copper = 8960 kg/m3
we knwo that density is given as
[tex]\rho = \frac{mass}{volume}[/tex]
[tex]volume = \pi * r^2 h[/tex]
[tex]density = \frac{ mass}{\pi * r^2 h}[/tex]
[tex]h = \frac{ mass}{\pi * r^2 * density}[/tex]
putting all value to get thickness value
[tex]h = \frac{ 98.6}{ \pi 0.131^2*8960}[/tex]
h = 0.204 m