Answer:
The rate of heat supplied to the engine is 71.7 kJ/min
Explanation:
Data
Engine hot temperature, [tex] T_H [/tex] = 900 K
Engine cold temperature, [tex] T_C [/tex] = 300 K
Refrigerator cold temperature, [tex] T'_C [/tex] = -15 C + 273 = 258 K
Refrigerator hot temperature, [tex] T'_H [/tex] = 300 K
Heat removed by refrigerator, [tex] Q'_{in} [/tex] = 295 kJ/min
Rate of heat supplied to the heat engine, [tex] Q_{in} [/tex] = ? kJ/min
See figure
From Carnot refrigerator coefficient of performance definition
[tex] COP_{ref} = \frac{T'_C}{T'_H - T'_C} [/tex]
[tex] COP_{ref} = \frac{258}{300 - 258} [/tex]
[tex] COP_{ref} = 6.14 [/tex]
Refrigerator coefficient of performance is defined as
[tex] COP_{ref} = \frac{Q'_{in}}{W} [/tex]
[tex] W = \frac{Q'_{in}}{COP_{ref}} [/tex]
[tex] W = \frac{295 kJ/min}{6.14} [/tex]
[tex] W = 48.04 kJ/min [/tex]
Carnot engine efficiency is expressed as
[tex] \eta = 1 - \frac{T_C}{T_H}[/tex]
[tex] \eta = 1 - \frac{300 K}{900 K}[/tex]
[tex] \eta = 0.67[/tex]
Engine efficiency is defined as
[tex] \eta = \frac{W}{Q_{in}} [/tex]
[tex] Q_{in} = \frac{W}{\eta} [/tex]
[tex] Q_{in} = \frac{48.04 kJ/min}{0.67} [/tex]
[tex] Q_{in} = 71.7 kJ/min [/tex]