A tensile force of 9 kN is applied to the ends of a solid bar of 7.0 mm diameter. Under load, the diameter reduces to 5.00 mm. Assuming uniform deformation and volume constancy, (a) determine the engineering stress and strain; (b) determine the true stress and strain.

Respuesta :

Answer:

Explanation:

Given

Force=9 kN

Diameter reduces from 7 mm to 5 mm

As volume remains constant therefore

[tex]A_0L_0=A_fL_f[/tex]

[tex]7^2\times L_0=5^2\times L_f[/tex]

[tex]\frac{L_0}{L_f}=\frac{25}{49}[/tex]

Thus Engineering Strain [tex]\epsilon _E=\frac{L_f-L_0}{L_0}[/tex]

[tex]=\frac{49}{25}-1=\frac{49-25}{25}=0.96[/tex]

Engineering stress[tex]=\frac{Load}{original\ Cross-section}[/tex]

[tex]\sigma _E=\frac{9\times 10^3}{\frac{\pi 7^2}{4}}=233.83 MPa[/tex]

(b)True stress

[tex]\sigma _T=\sigma _E\left ( 1+\epsilon _E\right )[/tex]

[tex]\sigma _T=233.83\times (1+0.96)=458.30 MPa[/tex]

True strain

[tex]\epsilon _T=ln\left ( 1+\epsilon _E\right )[/tex]

[tex]\epsilon _T=ln\left ( 1.96\right )=0.672[/tex]