In the cost function below, C(x) is the cost of producing x items. Find the average cost per item when the required number of items is produced C(x)=7.6x + 10,800 a 200 items b. 2000 items c. 5000 items a. What is the average cost per item when 200 items are produced?

Respuesta :

Answer:

The average cost per item when 200 items are produced is 61.6

Step-by-step explanation:

We start with the cost formula given by:

[tex]C(x)=7.6x+10,800[/tex]

Then we compute C(x) for x=200, 2000 and 5000 as follows:

[tex]C(200)=7.6*200+10,800=12,320\\C(2000)=7.6*2000+10,800=26,000\\C(5000)=7.6*5000+10,800=48,800[/tex]

Finally, to obtain the average cost per item when 200, 2,000 and 5,000 are produced (we will denote this by Av(200), Av(2000) and Av(5000) respectively) we just need to divide C(x) by the number of items produced. Then [tex]Av(x)=\frac{C(x)}{x}[/tex].

[tex]Av(200)=\frac{C(200)}{200}=\frac{12,320}{200}= 61.6\\Av(2000)=\frac{C(2000)}{2000}=\frac{26,000}{2000}= 13\\Av(5000)=\frac{C(5000)}{5000}=\frac{48,800}{5000}= 9.76\\[/tex]