Respuesta :

Answer:

The particular solution is [tex]y=\sin (\ln|x|)[/tex] .

Step-by-step explanation:

The given differential equation is

[tex]xy'=\sqrt {1-y^2}[/tex]

It can be written as

[tex]x\frac{dy}{dx}=\sqrt {1-y^2}[/tex]

Use variable separable method to solve the above equation.

[tex]\frac{dy}{\sqrt {1-y^2}}=\frac{1}{x}dx[/tex]

Integrate both sides.

[tex]\int \frac{dy}{\sqrt {1-y^2}}=\int \frac{1}{x}dx[/tex]

[tex]\sin^{-1} y=\ln|x|+C[/tex]            .... (1)

It is given that y(1)=0. It means y=0 at x=1.

[tex]\sin (0)=\ln|1|+C[/tex]

[tex]0=0+C[/tex]

[tex]0=C[/tex]

The value of constant is 0.

Substitute C=0 in equation (1) to find The required equation.

[tex]\sin^{-1} y=\ln|x|+0[/tex]

Taking sin both sides.

[tex]y=\sin (\ln|x|)[/tex]

Therefore the particular solution is [tex]y=\sin (\ln|x|)[/tex] .