Respuesta :

Answer:

a) [tex]V = 3887.72 ft^{3}[/tex]

b)[tex]V = 104.97 m^{3}[/tex]

c)[tex]V = 104,968,468.538 cm^{3}[/tex]

Step-by-step explanation:

A tank has the format of a cylinder.

The volume of the cylinder is given by:

[tex]V = \pi r^{2}h[/tex]

In which r is the radius and h is the heigth.

The problem states that the diameter is measured to be 15.00 ft. The radius is half the diameter. So, for this tank

[tex]r = \frac{15}{2} = 7.50[/tex] ft

The height of the tank is 22 ft, so [tex]h = 22[/tex].

a) Volume of the tank in [tex]ft^{3}[/tex]:

[tex]V = \pi r^{2}h[/tex]

[tex]V = pi*(7.5)^2*22[/tex]

[tex]V = 3887.72 ft^{3}[/tex]

b) Volume of the tank in [tex]m^{3}[/tex]:

We must convert both the radius and the height to m.

Each feet has 0.30 m, so:

Radius:

1 feet - 0.30m

7.5 feet - r m

[tex]r = 7.5*0.30[/tex]

[tex]r = 2.25m[/tex]

Height

1 feet - 0.30m

22f - h m

[tex]h = 22*0.30[/tex]

[tex]r = 6.60m[/tex]

The volume is:

[tex]V = \pi r^{2}h[/tex]

[tex]V = pi*(2.25)^2*6.60[/tex]

[tex]V = 104.97 m^{3}[/tex]

c) Volume of the tank in [tex]cm^{3}[/tex]:

Each m has 100 cm.

So [tex]r = 2.25m = 225cm[/tex]

[tex]h = 6.60m = 660cm[/tex]

The volume is:

[tex]V = \pi r^{2}h[/tex]

[tex]V = pi*(225)^2*660[/tex]

[tex]V = 104,968,468.538 cm^{3}[/tex]