Respuesta :

Answer:

a) x=(t^2)/2+cos(t), b) x=2+3e^(-2t), c) x=(1/2)sin(2t)

Step-by-step explanation:

Let's solve by separating variables:

[tex]x'=\frac{dx}{dt}[/tex]

a)  x’=t–sin(t),  x(0)=1

[tex]dx=(t-sint)dt[/tex]

Apply integral both sides:

[tex]\int {} \, dx=\int {(t-sint)} \, dt\\\\x=\frac{t^2}{2}+cost +k[/tex]

where k is a constant due to integration. With x(0)=1, substitute:

[tex]1=0+cos0+k\\\\1=1+k\\k=0[/tex]

Finally:

[tex]x=\frac{t^2}{2} +cos(t)[/tex]

b) x’+2x=4; x(0)=5

[tex]dx=(4-2x)dt\\\\\frac{dx}{4-2x}=dt \\\\\int {\frac{dx}{4-2x}}= \int {dt}\\[/tex]

Completing the integral:

[tex]-\frac{1}{2} \int{\frac{(-2)dx}{4-2x}}= \int {dt}[/tex]

Solving the operator:

[tex]-\frac{1}{2}ln(4-2x)=t+k[/tex]

Using algebra, it becomes explicit:

[tex]x=2+ke^{-2t}[/tex]

With x(0)=5, substitute:

[tex]5=2+ke^{-2(0)}=2+k(1)\\\\k=3[/tex]

Finally:

[tex]x=2+3e^{-2t}[/tex]

c) x’’+4x=0; x(0)=0; x’(0)=1

Let [tex]x=e^{mt}[/tex] be the solution for the equation, then:

[tex]x'=me^{mt}\\x''=m^{2}e^{mt}[/tex]

Substituting these equations in c)

[tex]m^{2}e^{mt}+4(e^{mt})=0\\\\m^{2}+4=0\\\\m^{2}=-4\\\\m=2i[/tex]

This becomes the solution m=α±βi where α=0 and β=2

[tex]x=e^{\alpha t}[Asin\beta t+Bcos\beta t]\\\\x=e^{0}[Asin((2)t)+Bcos((2)t)]\\\\x=Asin((2)t)+Bcos((2)t)[/tex]

Where A and B are constants. With x(0)=0; x’(0)=1:

[tex]x=Asin(2t)+Bcos(2t)\\\\x'=2Acos(2t)-2Bsin(2t)\\\\0=Asin(2(0))+Bcos(2(0))\\\\0=0+B(1)\\\\B=0\\\\1=2Acos(2(0))\\\\1=2A\\\\A=\frac{1}{2}[/tex]

Finally:

[tex]x=\frac{1}{2} sin(2t)[/tex]