Answer:
Explanation:
Total volume of the shell on which charge resides
= 4/3 π ( R₁³ - R₂³ )
= 4/3 X 3.14 ( 33³ - 20³) X 10⁻⁶ m³
= 117 x 10⁻³ m³
Charge inside the shell
-117 x 10⁻³ x 1.3 x 10⁻⁶
= -152.1 x 10⁻⁹ C
Charge at the center
= - 60 x 10⁻⁹ C
Total charge inside the shell
= - (152 .1 + 60 ) x 10⁻⁹ C
212.1 X 10⁻⁹C
Force between - ve charge and proton
F = k qQ / R²
k = 9 x 10⁹ .
q = 1.6 x 10⁻¹⁹ ( charge on proton )
Q = 212.1 X 10⁻⁹ ( charge on shell )
R = 33 X 10⁻² m ( outer radius )
F = [tex]\frac{9\times10^9\times1.6\times10^{-19}\times212.1\times 10^{-9}}{(33\times10^{-2})^2}[/tex]
F = 2.8 X 10⁻¹⁵ N
This force provides centripetal force for rotating proton
mv² / R = 2.8 X 10⁻¹⁵
V² = R X 2.8 X 10⁻¹⁵ / m
= 33 x 10⁻² x 2.8 x 10⁻¹⁵ /( 1.67 x 10⁻²⁷ )
[ mass of proton = 1.67 x 10⁻²⁷ kg)
= 55.33 x 10¹⁰
V = 7.44 X 10⁵ m/s