Answer:
[tex]3.33\times 10^{-4}[/tex] C
Explanation:
[tex]E[/tex] = Maximum electric field strength = [tex]3\times 10^{6}[/tex] N/C
[tex]r[/tex] = Radius of the sphere = [tex]1 [/tex] m
[tex]Q[/tex] = maximum charge stored by the sphere = ?
Considering that the total charge is stored at the center of the sphere, the electric field at the surface of sphere can be given as
[tex]E=\frac{kQ}{r^{2}}[/tex]
Inserting the values for the variables in the above equation
[tex]3\times 10^{6}=\frac{(9\times 10^{9})Q}{1^{2}}[/tex]
[tex]3\times 10^{6}=(9\times 10^{9})Q[/tex]
Dividing both side by [tex](9\times 10^{9})[/tex]
[tex]\frac{3\times 10^{6}}{9\times 10^{9}}= \frac{9\times 10^{9}}{9\times 10^{9}}Q[/tex]
[tex]Q = \frac{3\times 10^{6}}{9\times 10^{9}}[/tex]
[tex]Q = 3.33\times 10^{-4}[/tex] C