Answer:
a) p = 1.10 * 10⁻²⁷ kg·m/s
b) p = 9.46 * 10⁻²⁴ kg·m/s
c) p = 3.31 * 10⁻³⁶ kg·m/s
Explanation:
To solve this problem we use the de Broglie's equation, which describes the wavelenght of a photon with its momentum:
λ=h/p
Where λ is the wavelength, h is Planck's constant (6.626 * 10⁻³⁴ J·s), and p is the linear momentum of the photon.
Rearrange the equation in order to solve for p:
p=h/λ
And now we proceed to calculate, keeping in mind the SI units:
a) 600 nm= 600 * 10⁻⁹ m
p=(6.626 * 10⁻³⁴ J·s) / (600*10⁻⁹m) = 1.10 * 10⁻²⁷ kg·m/s
b) 70 pm= 70 * 10⁻¹² m
p=(6.626 * 10⁻³⁴ J·s) / (70*10⁻¹²m) = 9.46 * 10⁻²⁴ kg·m/s
c) 200 m
p=(6.626 * 10⁻³⁴ J·s) / (200m) = 3.31 * 10⁻³⁶ kg·m/s