The work function for metallic caesium is 2.14 eV. Calculate the
kinetic energy and the speed of the electrons ejected by light of
wavelength
(a) 750 nm,
(b) 250 nm.

Respuesta :

Answer:

Part 1) No electrons are emitted

Part 2) Energy equals 2.837eV and velocity equals [tex]0.998\times 10^{6}m/s[/tex]

Explanation:

From the basic equation of photoelectric effect we have

[tex]h\nu =\phi +\frac{1}{2}mv^{2}[/tex]

where

[tex]h\nu =\frac{hc}{\lambda }[/tex] is the energy of the incident radiation

[tex]\phi [/tex] is the work function of the metal

[tex]\frac{1}{2}mv^{2}[/tex] is the kinetic energy of the emitted electrons

Thus applying values we get

1) for wavelength of 750 nanometers we have

The energy of incident radiation equals [tex]6.636\times 10^{-34}\times\frac{3\times 10^{8}}{750\times 10^{-9}\times 1.6\times 10^{-19}}=1.66eV[/tex]

Since the energy of incident radiation is lesser than the work function of the metal hence no electron's will be emitted.

Part 2)

[tex]K.E=6.63\times 10^{-34}\times \frac{3\times 10^{8}}{250\times 10^{-9}}-2.14\times 1.6\times 10^{-19}[/tex]

Thus kinetic energy equals [tex]2.837eV[/tex]

Thus speed from energy is calculated as

[tex]\\\\v=\sqrt{\frac{2E}{m}}=\sqrt{\frac{2\times 2.837\times 1.6\times 10^{-19}}{9.1\times 10^{-31}}}[/tex]

[tex]v_{electron}=0.9988\times 10^{6}m/s[/tex]

Answer:a) -7.73×10^-20J

b) 3.201×10^-19J

Explanation:Kinetic energy of an electron is given by the equation: 1/2MeV^2=hv-phi(work function)

E=hc/wavelength- phi(work function)

WhereMe=mass of electron

h=plank's constant

V=velocity of ejected electron

Phi=work function=2.14ev

a) Wavelength=750nm

Substituting,

(6.636×10^-34js)(3×10^8m/s)/750×10^-9 -(2.14×1.602×10^-19/1ev

1.991×10^-25/760×10^-9 -3.428×10^-19

K.E=-7.73×10^-20J

b. Wavrlength=250nm

(6.636×10^-34)(3×10^8)/250×10^-9 -2.14×1.602×10^-19

K.E= 6.637×10^-19 -3.4283×10^-19

K.E=3.201×10^-19