Respuesta :

Answer:

8 is the modular inverse of 12 mod 19 since 12*8 mod 19 ≡ 1.

Step-by-step explanation:

We need to find the inverse of 12 modulo 19.

[tex]12^{-1}(\text{ mod 19})[/tex]

If a is an integer and m is modulo, then the modular multiplicative inverse of a modulo m is an integer b such that

[tex]a\times b\equiv 1(\text{ mod m})[/tex]

Substitute different values of b and check whether that remainder is 1 after modulo 19.

At b=1,

[tex]12\times 1\equiv 12(\text{ mod 19})[/tex]

At b=2,

[tex]12\times 2\equiv 5(\text{ mod 19})[/tex]

At b=3,

[tex]12\times 3\equiv 17(\text{ mod 19})[/tex]

At b=4,

[tex]12\times 4\equiv 10(\text{ mod 19})[/tex]

At b=5,

[tex]12\times 5\equiv 3(\text{ mod 19})[/tex]

At b=6,

[tex]12\times 6\equiv 15(\text{ mod 19})[/tex]

At b=7,

[tex]12\times 7\equiv 8(\text{ mod 19})[/tex]

At b=8,

[tex]12\times 8\equiv 1(\text{ mod 19})[/tex]

Therefore, 8 is the modular inverse of 12 mod 19 since 12*8 mod 19 ≡ 1.