What is the multiplicative rate of change for the exponential function f(x) = f start bracket x end bracket equals two start bracket five-halves end bracket superscript negative x

Respuesta :

frika

Answer:

The multiplicative rate of change is [tex]\dfrac{2}{5}.[/tex]

Step-by-step explanation:

You are given the function

[tex]f(x)=2\cdot \left(\dfrac{5}{2}\right)^{-x}[/tex]

First, use the following property of exponents

[tex]\left(\dfrac{a}{b}\right)^{-x}=\left(\dfrac{b}{a}\right)^{x}[/tex]

So, your function is

[tex]f(x)=2\cdot \left(\dfrac{2}{5}\right)^{x}[/tex]

If the exponential function is written in the form

[tex]f(x)=a\cdot b^x,[/tex]

then b is the multiplicative rate of change for this exponential function.

In your case, the multiplicative rate of change is [tex]\dfrac{2}{5}.[/tex]

Answer:

a) 0.4

Step-by-step explanation:

Got it right on quiz