Simplify. Assume that no denominator is equal to zero.

Answer:
The answer is C, 3³.
Step-by-step explanation:
When you're dividing integers with exponents, you subtract the two exponent (and when multiplying them, you add them instead.)
In this case, you subtract 7 from 10 which gives you 3.
Answer:
[tex]\frac{3^{10}}{3^7}=3^3[/tex]
Step-by-step explanation:
The [tex]3^{10}[/tex] means we have ten copies of 3 on top; the [tex]3^{7}[/tex] means we have seven copies of three underneath.
[tex]\frac{3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3}{3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3}[/tex]
We have three extra 3's, and they are on top.
[tex]\frac{3\cdot 3\cdot 3}{1} =3^3[/tex]
Therefore,
[tex]\frac{3^{10}}{3^7}=3^3[/tex]
We can also use the The Quotient Rule for Exponents,
For any non-zero number x and any integers a and b [tex]\frac{x^a}{x^b}=x^{a-b}[/tex]
[tex]\frac{3^{10}}{3^7}=3^{10-7}=3^3[/tex]