Answer:
a) [tex]c'(t) = (2 Cos(t), -2 Sin(t), 9e^t) [/tex]
b) [tex]c'(t) = (2 Cos(t), -2 Sin(t), 9e^t) [/tex]
Step-by-step explanation:
We are given in the question:
[tex]c(t) = (2 Sin(t), 2 Cos(t), 9e^t)[/tex]
F(x,y,z) = (y, -x, z)
a) [tex]c'(t) [/tex]
We differentiate with respect to t.
[tex]c'(t) = (2 Cos(t), -2 Sin(t), 9e^t) [/tex]
b) F(c(t))
This is a composite function.
[tex]F(c(t)) = F(2 Sin(t), 2 Cos(t), 9e^t)[/tex]
[tex]= (2 Cos(t), -2 Sin(t), 9e^t)[/tex]