Answer:
V=22.4m/s;T=2.29s
Explanation:
We will use two formulas in order to solve this problem. To determine the velocity at the bottom we can use potential and kinetic energy to solve for the velocity and use the uniformly accelerated displacement formula:
[tex]mgh=\frac{1}{2}mv^{2}\\\\X= V_{0}t-\frac{gt^{2}}{2}[/tex]
Solving for velocity using equation 1:
[tex]mgh=\frac{1}{2}mv^{2} \\\\gh=\frac{v^{2}}{2}\\\\\sqrt{2gh}=v\\\\v=\sqrt{2*9.8\frac{m}{s^2}*25.6m}=22.4\frac{m}{s}[/tex]
Solving for time in equation 2:
[tex]-25.6m = 0\frac{m}{s}t-\frac{9.8\frac{m}{s^{2}}t^{2}}{2}\\\\-51.2m=-9.8\frac{m}{s^{2}}t^{2}\\\\t=\sqrt{\frac{51.2m}{9.8\frac{m}{s^{2}}}}=2.29s[/tex]