Respuesta :
Answer:
a. a = [tex]6.41 m/s^2[/tex]
b. T = -0.81 N
Explanation:
Given,
- weight of the lighter block = [tex]w_1\ =\ 3.0\ N[/tex]
- weight of the heavier block = [tex]w_2\ =\ 7.0\ N[/tex]
- inclination angle = [tex]\theta\ =\ 30^o[/tex]
- coefficient of kinetic friction between the lighter block and the surface = [tex]\mu_1\ =\ 0.13[/tex]
- coefficient of kinetic friction between the heavier block and the surface = [tex]\mu_2\ =\ 0.31[/tex]
- friction force on the lighter block = [tex]f_1\ =\ \mu_1N_1\ =\ \mu_1 w_1cos\theta[/tex]
- friction force on the heavier block = [tex]f_2\ =\ \mu_2N_2\ =\ \mu_2w_2cos\theta[/tex]
Let 'a' be the acceleration of the blocks and 'T' be the tension in the string.
From the f.b.d. of the lighter block,
[tex]w_1sin\theta\ -\ T\ -\ f_1\ =\ \dfrac{w_1a}{g}\\\Rightarrow T\ =\ w_1sin\theta\ -\ \dfrac{w_1a}{g}\ -\ f_1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (1)[/tex]
From the f.b.d. of the heavier block,
[tex]w_2sin\theta\ +\ T\ -\ f_2\ =\ \dfrac{w_2a}{g}\\\Rightarrow T\ =\ \dfrac{w_2a}{g}\ -\ w_2sin\theta\ -\ f_2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (2)[/tex]
From eqn (1) and (2), we get,
[tex]w_1sin\theta\ -\ \dfrac{w_1a}{g}\ -\ f_1\ =\ \dfrac{w_2a}{g}\ -\ w_2sin\theta\ -\ f_2\\\Rightarrow w_1gsin\theta \ -\ w_1a\ -\ \mu_1w_1gcos\theta\ =\ w_2a\ -\ w_2gsin\theta\ -\ \mu_2 w_2gcos\theta\\[/tex]
[tex]\Rightarrow a\ =\ \dfrac{g(w_1sin\theta\ -\ \mu_1w_1cos\theta\ +\ w_2sin\theta\ +\ \mu_2w_2cos\theta)}{w_1\ +\ w_2}\\\Rightarrow a\ =\ \dfrac{g[sin\theta(w_1\ +\ w_2)\ +\ cos\theta(\mu_2w_2\ -\ \mu_1w_1)]}{w_1\ +\ w_2}\\[/tex]
[tex]\Rightarrow a\ =\ \dfrac{9.81\times [sin30^o\times (3.0\ +\ 7.0)\ +\ cos30^o\times (0.31\times 7.0\ -\ 0.13\times 3.0)]}{3.0\ +\ 7.0}\\\Rightarrow a\ =\ 6.4\ m/s.[/tex]
part (b)
From the eqn (2), we get,[tex]T\ =\ \dfrac{w_2a}{g}\ -\ w_2sin\theta\ -\ \mu_2w_2cos\theta\\\Rightarrow T\ =\ \dfrac{7.0\times 6.41}{9.81}\ -\ 7.0\times sin30^o\ -\ 0.31\times 7.0\times cos30^o\\\Rightarrow T\ =\ -0.81\ N[/tex]

Answer:
(a) 2.793 m/s^2
(b) 0.335 N
Explanation:
Let a be the acceleration in the system and T be the tension in the string.
W1 = 3 N
W2 = 7 N
m1 = 3 /1 0 = 0.3 kg
m2 = 7 / 10 = 0.7 kg
θ = 30°
μ1 = 0.13, μ2 = 0.31
Let f1 be the friction force acting on block 1 and f2 be the friction force acting on block 2.
By the laws of friction
f1 = μ1 x N1
Where, N1 be the normal reaction acting on block 1.
So, f1 = 0.13 x W1 Cosθ = 0.13 x 3 x cos 30 = 0.337 N
By the laws of friction
f2 = μ2 x N2
Where, N2 be the normal reaction acting on block 2.
So, f2 = 0.31 x W2 Cosθ = 0.31 x 7 x cos 30 = 1.88 N
Apply Newton's second law for both the blocks
W1 Sin30 - T - f1 = m1 a
3 Sin 30 - T - 0.337 = 0.3 x a
1.163 - T = 0.3 a ..... (1)
W2 Sin30 + T - f2 = m2 a
7 Sin30 + T - 1.88 = 0.7 x a
1.62 + T = 0.7 a ..... (2)
By solving equation (1) and (2) we get
a = 2.793 m/s^2
(b) Put the value of a in equation (2), we get
1.62 + T = 0.7 x 2.793
T = 0.335 N
