Answer:Yes,266.66 MPa
Explanation:
Given
Yield stress of material =140 MPa
Cross-section of [tex]300\times 100 mm^2[/tex]
Force(F)=8 MN
Therefore stress due to this Force([tex]\sigma [/tex])
[tex]\sigma =\frac{F}{A}=\frac{8\times 10^6}{300\times 100\times 10^{-6}}[/tex]
[tex]\sigma =266.66 \times 10^{6} Pa[/tex]
[tex]\sigma =266.66 MPa[/tex]
Since induced stress is greater than Yield stress therefore Plastic deformation occurs