Respuesta :

Answer:50 , 20

Explanation:

Given

Diametrical Pitch[tex]\left ( P_D\right )=\frac{T}{D}[/tex]

where T= no of teeths

D=diameter

module(m) of gears must be same

[tex]m=\frac{D}{T}=\frac{1}{P_D}=0.1[/tex]

Let [tex]T_1 & T_2[/tex]be the gears on two gears

Therefore Center distance is given by

[tex]m\frac{\left ( T_1+T_2\right )}{2}=3.5[/tex]

thus

[tex]0.1\frac{\left ( T_1+T_2\right )}{2}=3.5[/tex]

[tex]T_1+T_2=70----1[/tex]

and Velocity ratio is given by

[tex]VR=\frac{No\ of\ teeths\ on\ Driver\ gear}{No.\ of\ teeths\ on\ Driven\ gear} [/tex]

[tex]2.5=\frac{T_1}{T_2}----2[/tex]

From 1 & 2 we get

[tex]T_1=50, T_2=20[/tex]