a granite monument has a volume of 25,365.4 cm3. The density of granite is 2.7 g/cm3. Use this information to calculate the mass of the monument to the nearest tenth.



The mass of the granite monument is
g.

Respuesta :

Answer:

The mass of the monument (to the nearest tenth)  where volume of the granite monuments is  [tex]25,365.4 \mathrm{cm}^{3}[/tex] and density of the granite is  [tex]2.7 g / \mathrm{cm}^{3}[/tex] is  68,486.6 g          

 Explanation:  

Given:

Volume of the granite monument, p[tex]=25,365.4 \mathrm{cm}^{3}[/tex]

density of granite, [tex]V=2.7 \mathrm{g} / \mathrm{cm} 3[/tex]

To find:

The mass of the monument to the nearest tenth= ?

Solution:

Step 1:

mass of the monument ,[tex]m=p V \text { grams }[/tex]

step 2:

[tex]m=p V[/tex]

substituting the values,

m[tex]=(25,365.4)(2.7)[/tex]

m[tex] =68,486.58 g[/tex]

m [tex]= 68,486.6 g[/tex]           (rounding off to nearest tenth)

Result :

The mass of the monument (to the nearest tenth) where volume of the granite monuments is  [tex]25,365.4 \mathrm{cm}^{3}[/tex] and density of the granite is [tex]2.7 \mathrm{g} / \mathrm{cm}^{3}[/tex] is 68,486.6 g.           

Answer:

68,486.6 g

Explanation: