Respuesta :
Answer:
The mass of the monument (to the nearest tenth) where volume of the granite monuments is [tex]25,365.4 \mathrm{cm}^{3}[/tex] and density of the granite is [tex]2.7 g / \mathrm{cm}^{3}[/tex] is 68,486.6 g
Explanation:
Given:
Volume of the granite monument, p[tex]=25,365.4 \mathrm{cm}^{3}[/tex]
density of granite, [tex]V=2.7 \mathrm{g} / \mathrm{cm} 3[/tex]
To find:
The mass of the monument to the nearest tenth= ?
Solution:
Step 1:
mass of the monument ,[tex]m=p V \text { grams }[/tex]
step 2:
[tex]m=p V[/tex]
substituting the values,
m[tex]=(25,365.4)(2.7)[/tex]
m[tex] =68,486.58 g[/tex]
m [tex]= 68,486.6 g[/tex] (rounding off to nearest tenth)
Result :
The mass of the monument (to the nearest tenth) where volume of the granite monuments is [tex]25,365.4 \mathrm{cm}^{3}[/tex] and density of the granite is [tex]2.7 \mathrm{g} / \mathrm{cm}^{3}[/tex] is 68,486.6 g.