Respuesta :

Answer: The correct answer is Option c.

Explanation:

We are given:

Mass percentage of [tex]CH_4[/tex] = 20 %

So, mole fraction of [tex]CH_4[/tex] = 0.2

Mass percentage of [tex]C_2H_4[/tex] = 30 %

So, mole fraction of [tex]C_2H_4[/tex] = 0.3

Mass percentage of [tex]C_2H_2[/tex] = 35 %

So, mole fraction of [tex]C_2H_2[/tex] = 0.35

Mass percentage of [tex]C_2H_2O[/tex] = 15 %

So, mole fraction of [tex]C_2H_2O[/tex] = 0.15

We know that:

Molar mass of [tex]CH_4[/tex] = 16 g/mol

Molar mass of [tex]C_2H_4[/tex] = 28 g/mol

Molar mass of [tex]C_2H_2[/tex] = 26 g/mol

Molar mass of [tex]C_2H_2O[/tex] = 48 g/mol

To calculate the average molecular mass of the mixture, we use the equation:

[tex]\text{Average molecular weight of mixture}=\frac{_{i=1}^n\sum{\chi_im_i}}{n_i}[/tex]

where,

[tex]\chi_i[/tex] = mole fractions of i-th species

[tex]m_i[/tex] = molar masses of i-th species

[tex]n_i[/tex] = number of observations

Putting values in above equation:

[tex]\text{Average molecular weight}=\frac{(\chi_{CH_4}\times M_{CH_4})+(\chi_{C_2H_4}\times M_{C_2H_4})+(\chi_{C_2H_2}\times M_{C_2H_2})+(\chi_{C_2H_2O}\times M_{C_2H_2O})}{4}[/tex]

[tex]\text{Average molecular weight of mixture}=\frac{(0.20\times 16)+(0.30\times 28)+(0.35\times 26)+(0.15\times 42)}{4}\\\\\text{Average molecular weight of mixture}=6.75[/tex]

Hence, the correct answer is Option c.