A second order reaction of the type A+B>P was carried out in a solution that was initially .075 mol dm-3 in A and .03 mol dm-3 in B. After 1 hour, the concentration of A had fallen to .02 mol dm-3. a. Calculate the rate constant. b. What is the half life of the reactant? Answers: a. 16.2 dm3mol-hr-, 4.5E-3 dm3mol-s- b. 5.1E3s, 2.1E3 s

Respuesta :

Answer:

The rate constant of the reaction is [tex]1.0185\times 10^{-2} dm^3/ mol s[/tex].

[tex]1.31\times 10^3 s[/tex] is the half life of the reactant.

Explanation:

A+B → P

Integrated rate law for second order kinetics is given by:

[tex]\frac{1}{A}=kt+\frac{1}{A_0}[/tex]

A = concentration left after time t = [tex]0.02 mol /dm^3[/tex]

[tex]A_o[/tex] = Initial concentration = [tex]0.075 mol /dm^3[/tex]

t = 1 hour = 3600 seconds

[tex]\frac{1}{0.02 mol /dm^3}=k\times 3600 s+\frac{1}{0.075 mol /dm^3}[/tex]

[tex]k=\frac{1}{3600 s}\times (\frac{1}{0.02 mol /dm^3}-\frac{1}{0.075 mol /dm^3)}[/tex]

[tex]k = 1.0185\times 10^{-2} dm^3/ mol s[/tex]

Half life for second order kinetics is given by:

[tex]t_{\frac{1}{2}}=\frac{1}{k\times a_0}[/tex]

[tex]t_{\frac{1}{2}}=\frac{1}{1.0185\times 10^{-2} dm^3/ mol s\times 0.075 mol /dm^3}=1.31\times 10^3 s[/tex]

The rate constant of the reaction is [tex]1.0185\times 10^{-2} dm^3/ mol s[/tex].

[tex]1.31\times 10^3 s[/tex] is the half life of the reactant.