Exactly find sin(x+y) if sinx= 1/3 where x ends in the
2ndquadrant and cosy= 1/5 where y ends in the first quadrant.

Respuesta :

Answer:  [tex]\sin(x+y)=\dfrac{1-8\sqrt{3}}{15}[/tex]

Step-by-step explanation:

Since we have given that

[tex]\sin x=\dfrac{1}{3}\\\\so,\\\\\cos x=\sqrt{1-\dfrac{1}{9}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}[/tex]

Since x ends in the 2 nd quadrant,

So, [tex]\cos x=\dfrac{-2\sqrt{2}}{3}[/tex]

Similarly,

[tex]\cos y=\dfrac{1}{5}\\\\So,\\\\\sin y=\sqrt{1-\dfrac{1}{25}}=\sqrt{\dfrac{24}{25}}=\dfrac{2\sqrt{6}}{5}[/tex]

So, sin(x+y) is given by

[tex]\sin x\cos y+\sin y\cos x\\\\\\=\dfrac{1}{3}\times \dfrac{1}{5}+\dfrac{2\sqrt{6}}{5}\times (-)\dfrac{2\sqrt{2}}{3}\\\\\\=\dfrac{1}{15}-\dfrac{8\sqrt{3}}{15}\\\\\\=\dfrac{1-8\sqrt{3}}{15}[/tex]

Hence, [tex]\sin(x+y)=\dfrac{1-8\sqrt{3}}{15}[/tex]