Diameters of small commercially available steel rods vary by sixteenths of an inch. Select the required commercial size of the rod required to support a tensile load of 35,000 lb if the tensile stress cannot exceed 20,000 psi.

Respuesta :

Answer:

[tex]1\frac{1}{2}[/tex] in dia rod

Explanation:

Given;

Maximum tensile stress = 20,000 psi

Applied tensile load = 35,000 lb

Now,

the area of the steel rod required = [tex]\frac{\textup{Applied tensile load}}{\textup{Maximum tensile stress}}[/tex]

or

the area of the steel rod required = [tex]\frac{\textup{35,000}}{\textup{20,000}}[/tex]

or

the area of the steel rod required = 1.75 in²

Also, Area of rod = [tex]\frac{\pi}{4}d^2[/tex]

where, d is the diameter of the rod

1.75 in² = [tex]\frac{\pi}{4}d^2[/tex]

or

d = 1.49 in

So we can use [tex]1\frac{1}{2}[/tex] in dia rod