Respuesta :

Answer:

1) Angle with x-axis = 42.03 degrees

2) Angle with y-axis =68.2 degrees

3) Angle with z-axis =   56.14 degrees

Explanation:

given any vector [tex]\overrightarrow{r}=x\widehat{i}+y\widehat{j}+z\widehat{k}[/tex]

and any x axis the angle between them is given by

[tex]\theta_x =cos^{-1}(\frac{\overrightarrow{r}\cdot\widehat{i}}{\sqrt{x^2+y^2+z^2}} )\\\\\theta_x=cos^{-1}(\frac{x\cdot i}{\sqrt{x^2+y^2+z^2}} )[/tex]

Applying values we get

[tex]\theta_x=cos^{-1}(\frac{160}{\sqrt{160^2+80^2+120^2}} )=42.03^{o}[/tex]

Angle between the vector and y axis is given by

[tex]\theta_y =cos^{-1}(\frac{\overrightarrow{r}\cdot\widehat{j}}{\sqrt{x^2+y^2+z^2}} )\\\\\theta_y=cos^{-1}(\frac{y\cdot j}{\sqrt{x^2+y^2+z^2}} )[/tex]

Applying values we get

[tex]\theta_x=cos^{-1}(\frac{80}{\sqrt{160^2+80^2+120^2}} )=68.2^{o}[/tex]

Similarly angle between z axis and the vector is given by

[tex]\theta_z =cos^{-1}(\frac{\overrightarrow{r}\cdot\widehat{k}}{\sqrt{x^2+y^2+z^2}} )\\\\\theta_x=cos^{-1}(\frac{z\cdot k}{\sqrt{x^2+y^2+z^2}} )[/tex]

Applying values we get

[tex]\theta_z=cos^{-1}(\frac{120}{\sqrt{160^2+80^2+120^2}} )=56.145^{o}[/tex]

The angles made by F will be "42.03°", "68.2°" and "56.14°".

Force and Vector:

According to the question,

Force, F = 160 i + 80 j + 120 kN

Let any vector,

[tex]\vec r = x \hat i + y \hat j+ z \hat k[/tex]

The angle between x-axis be:

[tex]\Theta_x[/tex] = Cos⁻¹ ([tex]\frac{\vec r. \hat i}{\sqrt{x^2 +y^2 + z^2} }[/tex])

    = Cos⁻¹ ([tex]\frac{x.i}{\sqrt{x^2+y^2+z^2} }[/tex])

By substituting the values,

    = Cos⁻¹ ([tex]\frac{160}{\sqrt{160^2+80^2+120^2} }[/tex])

    = 42.03°

and,

The angle between y-axis be:

[tex]\Theta_y[/tex] = Cos⁻¹ ([tex]\frac{\vec r. \hat j}{\sqrt{x^2 +y^2 + z^2} }[/tex])

    = Cos⁻¹ ([tex]\frac{y.i}{\sqrt{x^2+y^2+z^2} }[/tex])

By substituting the values,

    = Cos⁻¹ ([tex]\frac{80}{\sqrt{160^2+80^2+120^2} }[/tex])

    = 68.2°

and,

The angle between z-axis be:

[tex]\Theta_z[/tex] = Cos⁻¹ ([tex]\frac{\vec r. \hat k}{\sqrt{x^2 +y^2 + z^2} }[/tex])

    = Cos⁻¹ ([tex]\frac{z.k}{\sqrt{x^2+y^2+z^2} }[/tex])

By substituting the values,

    = Cos⁻¹ ([tex]\frac{120}{\sqrt{160^2+80^2+120^2} }[/tex])

    = 56.145°

Thus the above approach is correct.

Find out more information about force here:

https://brainly.com/question/1421935