Respuesta :
Answer:
Approximately 0.979 J.
Explanation:
Assume that the two charges are in vacuum. Apply the coulomb's law to find their initial and final electrical potential energy [tex]\mathrm{EPE}[/tex].
[tex]\displaystyle \mathrm{EPE} = \frac{k \cdot q_1 \cdot q_2}{r}[/tex],
where
- The coulomb's constant [tex]k = 8.99\times 10^{9}\; \rm N\cdot m^{2} \cdot C^{-2}[/tex],
- [tex]q_1[/tex] and [tex]q_2[/tex] are the sizes of the two charges, and
- [tex]r[/tex] is the separation of (the center of) the two charges.
Note that there's no negative sign before the fraction.
Make sure that all values are in SI units:
- [tex]q_1 = -7\rm \;\mu C = -7\times 10^{-6}\; C[/tex];
- [tex]q_2 = 4\rm \;\mu C = 4\times 10^{-6}\; C[/tex];
- Initial separation: [tex]\rm 20\; cm = 0.20\; cm[/tex];
- Final separation: [tex]\rm 90\; cm = 0.90\; cm[/tex].
Apply Coulomb's law:
Initial potential energy:
[tex]\begin{aligned} \frac{k \cdot q_1 \cdot q_2}{r} &= \frac{8.99\times 10^{9}\times (-7\times 10^{-6})\times 4\times 10^{-6}}{0.20}\\&= \rm -1.2586\; J\end{aligned}[/tex].
Final potential energy:
[tex]\begin{aligned} \frac{k \cdot q_1 \cdot q_2}{r} &= \frac{8.99\times 10^{9}\times (-7\times 10^{-6})\times 4\times 10^{-6}}{0.90}\\&= \rm -0.279689\; J\end{aligned}[/tex].
The final potential energy is less negative than the initial one. In other words, the two particles gain energy in this process. The energy difference (final minus initial) will be equal to the work required to move them at a constant speed.
[tex]\begin{aligned}\text{Work required} &= \text{Final EPE} - \text{Initial EPE}\\&= \rm -0.279689\; J - (-1.2586\; J)\\&\approx 0.979\; J\end{aligned}[/tex].