Respuesta :

Answer:

The solution to the system is [tex]x=1[/tex],[tex]y=-2[/tex] and [tex]z=-5[/tex]

Step-by-step explanation:

Cramer's rule defines the solution of a system of equations in the following way:

[tex]x= \frac{D_x}{D}[/tex], [tex]y= \frac{D_y}{D}[/tex] and [tex]z= \frac{D_z}{D}[/tex] where [tex]D_x[/tex], [tex]D_y[/tex] and [tex]D_z[/tex] are the determinants formed by replacing the x,y and z-column values with the answer-column values respectively. [tex]D[/tex] is the determinant of the system. Let's see how this rule applies to this system.

The system can be written in matrix form like:

[tex]\left[\begin{array}{ccc}5&-3&1\\0&2&-3\\7&10&0\end{array}\right]\times \left[\begin{array}{c}x&y&z\end{array}\right] = \left[\begin{array}{c}6&11&-13\end{array}\right][/tex]

Then each of the previous determinants are given by:

[tex]D_x = \left|\begin{array}{ccc}6&-3&1\\11&2&-3\\-13&10&0\end{array}\right|=199[/tex] Notice how the x-column has been substituted with the answer-column one.

[tex]D_y = \left|\begin{array}{ccc}5&6&1\\0&11&-3\\7&-13&0\end{array}\right|=-398[/tex] Notice how the y-column has been substituted with the answer-column one.

[tex]D_z = \left|\begin{array}{ccc}5&-3&6\\0&2&11\\7&10&-13\end{array}\right|=-995[/tex]

Then, substituting the values:

[tex]x= \frac{D_x}{D}=\frac{199}{199}\\ x=1[/tex]

[tex]x= \frac{D_y}{D}=\frac{-398}{199}\\ y=-2[/tex]

[tex]x= \frac{D_z}{D}=\frac{-995}{199}\\ x=-5[/tex]