Answer:
Marginal revenue = R'(Q) = -0.6 Q + 221
Average revenue = -0.3 Q + 221
Step-by-step explanation:
As per the question,
Functions associated with the demand function P= -0.3 Q + 221, where Q is the demand.
Now,
As we know that the,
Marginal revenue is the derivative of the revenue function, R(x), which is equals the number of items sold,
Therefore,
R(Q) = Q × ( -0.3Q + 221) = -0.3 Q² + 221 Q
∴ Marginal revenue = R'(Q) = -0.6 Q + 221
Now,
Average revenue (AR) is defined as the ratio of the total revenue by the number of units sold that is revenue per unit of output sold.
[tex]Average\ revenue\ = \frac{Total\ revenue}{number\ of\ units\ sold}[/tex]
Where Total Revenue (TR) equals quantity of output multiplied by price per unit.
TR = Price (P) × Total output (Q) = (-0.3Q + 221) × Q = -0.3 Q² + 221 Q
[tex]Average\ revenue\ = \frac{TR}{Q}[/tex]
[tex]Average\ revenue\ = \frac{-0.3Q^{2}+221Q}{Q}[/tex]
∴ Average revenue = -0.3Q + 221