Answer:
[tex]x=\frac{-31\pm \sqrt{1000.2}}{4}[/tex]
Step-by-step explanation:
Given quadratic equation,
[tex]2x^2+31x-4.9=0[/tex]
Since, by the quadratic formula,
The solution of a quadratic equation [tex]ax^2+bx+c=0[/tex] is,
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
Here, a = 2, b = 31, c = -4.9,
Thus, by the quadratic formula,
[tex]x=\frac{-31\pm \sqrt{31^2-4\times 2\times -4.9}}{2\times 2}[/tex]
[tex]=\frac{-31\pm \sqrt{961+39.2}}{4}[/tex]
[tex]=\frac{-31\pm \sqrt{1000.2}}{4}[/tex]
[tex]\implies x = \frac{-31+\sqrt{1000.2}}{4}\text{ or }x=\frac{-31- \sqrt{1000.2}}{4}[/tex]