Answer:
33.4°C .
Explanation:
mass of bullet, m = 15 g = 0.015 kg
velocity of bullet, v = 1502 m/s
mass of wax, M = 2.5 kg
Initial temperature of wax, T1 = 31°C
Let T2 be the final temperature of wax.
Specific heat of wax, c = 0.7 cal/g°C = 0.7 x 1000 x 4 J/kg°C = 2800 J/kg°C
The kinetic energy of the bullet is converted into heat energy which is used to heat the wax.
[tex]\frac{1}{2}mv^{2}= M \times c \times \left ( T_{2}-T_{1} \right )[/tex]
[tex]0.5\times 0.015\times 1502 \times 1502 = 2.5 \times 2800 \times\left ( T_{2}-31 \right )[/tex]
[tex]2.42 =\left ( T_{2}-31 \right )[/tex]
[tex]T_{2}=33.4^{o}C[/tex]
thus, the final temperature of wax is 33.4°C .