Answer:
20 square units
Step-by-step explanation:
we know that
The area of rectangle is equal to
[tex]A=LW[/tex]
In this problem
[tex]L=WX=ZY\\W=WZ=XY[/tex]
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Find the distance WX
we have
W(-3,1), X(3,3)
substitute the values in the formula
[tex]d=\sqrt{(3-1)^{2}+(3+3)^{2}}[/tex]
[tex]d=\sqrt{(2)^{2}+(6)^{2}}[/tex]
[tex]d_W_X=\sqrt{40}\ units[/tex]
Find the distance XY
we have
X(3,3),Y(4,0)
substitute the values in the formula
[tex]d=\sqrt{(0-3)^{2}+(4-3)^{2}}[/tex]
[tex]d=\sqrt{(-3)^{2}+(1)^{2}}[/tex]
[tex]d_X_Y=\sqrt{10}\ units[/tex]
Find the area of rectangle
[tex]A=(WX)(XY)[/tex]
substitute the values
[tex]A=(\sqrt{40})(\sqrt{10})=20\ units^2[/tex]