The function​ s(t) represents the position of an object at time t moving along a line. Suppose s( 1 )=123 and s( 3 )=173. Find the average velocity of the object over the interval of time [1,3]?

Respuesta :

Answer:

The average velocity is [tex]v_{average}=25[/tex].

Explanation:

The average velocity is calculated in the following way:

If [tex]s(t)[/tex] represents the position of an object at time [tex]t[/tex],

and [tex]s(t_{1})=a[/tex] ; [tex]s(t_{2})=b[/tex], the average velocity is defined in that interval as:

[tex]v_{average}= \frac{final.position-initial.position}{elapsed.time}=\frac{b-a}{t_{2}-t_{1}}[/tex]

Taking the data from the question:

[tex]v_{average}=\frac{173-123}{3-1}=\frac{50}{2}=25[/tex].