Answer:
2,38kg
Explanation:
Mass in function of time can be found by the formula: [tex]m_{(t)} =m_{0} e^{-kt}[/tex], where [tex]m_{0}[/tex] is the initial mass, t is the time and k is a constant.
Given that a sample decay 1% per day, that means that after first day you have 99% of mass.
[tex]m_{(1)} =m_{0} e^{-k(1)}[/tex], but [tex]m_{(1)}=\frac{99m_{0} }{100}[/tex], so we have [tex]\frac{99m_{0} }{100}=m_{0}e^{-k}[/tex], then [tex]k=-ln(\frac{99}{100})=0.01[/tex]
Now using k found we must to find [tex]m_{(5)}[/tex].
[tex]m_{(5)}=m_{0}e^{-(0.01)5}=2.5kge^{-0.05} =2.5x0.951=2.38kg[/tex]