A river with a flow of 50 m3/s discharges into a lake with a volume of 15,000,000 m3. The river has a background pollutant concentration of 5.6 mg/L. At time zero the concentration in the lake is 5.6 mg/L before an industry begins discharging waste with a flow of 0.7 m3/s also into the lake with a pollutant concentration of 300 mg/L. The decay coefficient for the pollutant in the lake is 0.2 per day. What is concentration leaving the lake one day after the pollutant is added?

Respuesta :

Explanation:

The given data is as follows.

       Volume of lake = [tex]15 \times 10^{6} m^{3}[/tex] = [tex]15 \times 10^{6} m^{3} \times \frac{10^{3} liter}{1 m^{3}}[/tex]

        Concentration of lake = 5.6 mg/l

Total amount of pollutant present in lake = [tex]5.6 \times 15 \times 10^{9} mg[/tex]

                                                                    = [tex]84 \times 10^{9}[/tex] mg

                                                                    = [tex]84 \times 10^{3}[/tex] kg

Flow rate of river is 50 [tex]m^{3} sec^{-1}[/tex]

Volume of water in 1 day = [tex]50 \times 10^{3} \times 86400 liter[/tex]

                                          = [tex]432 \times 10^{7}[/tex] liter

Concentration of river is calculated as 5.6 mg/l. Total amount of pollutants present in the lake are [tex]2.9792 \times 10^{10} mg[/tex] or [tex]2.9792 \times 10^{4} kg[/tex]

Flow rate of sewage = [tex]0.7 m^{3} sec^{-1}[/tex]

Volume of sewage water in 1 day = [tex]6048 \times 10^{4}[/tex] liter

Concentration of sewage = 300 mg/L

Total amount of pollutants = [tex]1.8144 \times 10^{10} mg[/tex] or [tex]1.8144 \times 10^{4}kg[/tex]

Therefore, total concentration of lake after 1 day = [tex]\frac{131936 \times 10^{6}}{1.938 \times 10^{10}}mg/ l[/tex]

                                        = 6.8078 mg/l

                 [tex]k_{D}[/tex] = 0.2 per day

       [tex]L_{o}[/tex] = 6.8078

Hence, [tex]L_{liquid}[/tex] = [tex]L_{o}(1 - e^{-k_{D}t}[/tex]

             [tex]L_{liquid}[/tex] = [tex]6.8078 (1 - e^{-0.2 \times 1})[/tex]  

                             = 1.234 mg/l

Hence, the remaining concentration = (6.8078 - 1.234) mg/l

                                                             = 5.6 mg/l

Thus, we can conclude that concentration leaving the lake one day after the pollutant is added is 5.6 mg/l.