The position of a particle moving along the x-axis depends on the time according to the equation x = ct2 - bt3, where x is in meters, t in seconds, and c and b are positive constants. What are the units of (a) constant c and (b) constant b? Find a formula in terms of c, b, and t of the (c) velocity v and (d) acceleration a. (e) At what time t ≥ 0 does the particle reach its maximum x value?

Respuesta :

Answer:

(a):  [tex]\rm meter/ second^2.[/tex]

(b):  [tex]\rm meter/ second^3.[/tex]

(c):  [tex]\rm 2ct-3bt^2.[/tex]

(d):  [tex]\rm 2c-6bt.[/tex]

(e):  [tex]\rm t=\dfrac{2c}{3b}.[/tex]

Explanation:

Given, the position of the particle along the x axis is

[tex]\rm x=ct^2-bt^3.[/tex]

The units of terms [tex]\rm ct^2[/tex] and [tex]\rm bt^3[/tex] should also be same as that of x, i.e., meters.

The unit of t is seconds.

(a):

Unit of [tex]\rm ct^2=meter[/tex]

Therefore, unit of [tex]\rm c= meter/ second^2.[/tex]

(b):

Unit of [tex]\rm bt^3=meter[/tex]

Therefore, unit of [tex]\rm b= meter/ second^3.[/tex]

(c):

The velocity v and the position x of a particle are related as

[tex]\rm v=\dfrac{dx}{dt}\\=\dfrac{d}{dx}(ct^2-bt^3)\\=2ct-3bt^2.[/tex]

(d):

The acceleration a and the velocity v of the particle is related as

[tex]\rm a = \dfrac{dv}{dt}\\=\dfrac{d}{dt}(2ct-3bt^2)\\=2c-6bt.[/tex]

(e):

The particle attains maximum x at, let's say, [tex]\rm t_o[/tex], when the following two conditions are fulfilled:

  1. [tex]\rm \left (\dfrac{dx}{dt}\right )_{t=t_o}=0.[/tex]
  2. [tex]\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}<0.[/tex]

Applying both these conditions,

[tex]\rm \left ( \dfrac{dx}{dt}\right )_{t=t_o}=0\\2ct_o-3bt_o^2=0\\t_o(2c-3bt_o)=0\\t_o=0\ \ \ \ \ or\ \ \ \ \ 2c=3bt_o\Rightarrow t_o = \dfrac{2c}{3b}.[/tex]

For [tex]\rm t_o = 0[/tex],

[tex]\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}=2c-6bt_o = 2c-6\cdot 0=2c[/tex]

Since, c is a positive constant therefore, for [tex]\rm t_o = 0[/tex],

[tex]\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}>0[/tex]

Thus, particle does not reach its maximum value at [tex]\rm t = 0\ s.[/tex]

For [tex]\rm t_o = \dfrac{2c}{3b}[/tex],

[tex]\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}=2c-6bt_o = 2c-6b\cdot \dfrac{2c}{3b}=2c-4c=-2c.[/tex]

Here,

[tex]\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}<0.[/tex]

Thus, the particle reach its maximum x value at time [tex]\rm t_o = \dfrac{2c}{3b}.[/tex]