Answer:
29 is answer.
Step-by-step explanation:
Given that the function s(t) represents the position of an object at time t moving along a line. Suppose s(2)=150 and s(5)=237.
To find average velocity of the object over the interval of time [1,3]
We know that derivative of s is velocity and antiderivative of velocity is position vector .
Since moving along a line equation of s is
use two point formula
[tex]\frac{s-150}{237-150} =\frac{t-2}{5-2} \\s=29t-58+150\\s=29t+92[/tex] gives the position at time t.
Average velocity in interval (1,3)
=[tex]\frac{1}{3-1} (s(3)-s(1))\\=\frac{1}{2} [87+58-29-58]\\=29[/tex]