Find each of the following functions. f(x) = 3 − x , g(x) = x2 − 4 (a) f + g State the domain of the function. (Enter your answer using interval notation.) (b) f − g State the domain of the function. (Enter your answer using interval notation.) (c) fg State the domain of the function. (Enter your answer using interval notation.) (d) f/g State the domain of the function. (Enter your answer using interval notation.)

Respuesta :

Answer:

(a) [tex](f+g)(x)=x^2-x-1[/tex];  Domain = (-∞,∞)

(b) [tex](f-g)(x)=-x^2-x+7[/tex];  Domain = (-∞,∞)

(c) [tex](fg)(x)=-x^3+3x^2+4x-12[/tex];  Domain = (-∞,∞)

(d) [tex](\frac{f}{g})(x)=\frac{3-x}{x^2-4}[/tex]; Domain = (-∞,-2)∪(-2,2)∪(2,∞)

Step-by-step explanation:

The given functions are

[tex]f(x)=3-x[/tex]

[tex]g(x)=x^2-4[/tex]

(a)

We need to find the function f+g.

[tex](f+g)(x)=f(x)+g(x)[/tex]

[tex](f+g)(x)=(3-x)+(x^2-4)[/tex]

[tex](f+g)(x)=x^2-x-1[/tex]

It is a polynomial and domain of a polynomial is all real numbers.

Domain = (-∞,∞)

(b)

We need to find the function f-g.

[tex](f-g)(x)=f(x)-g(x)[/tex]

[tex](f-g)(x)=(3-x)-(x^2-4)[/tex]

[tex](f-g)(x)=3-x-x^2+4[/tex]

[tex](f-g)(x)=-x^2-x+7[/tex]

It is a polynomial. So,

Domain = (-∞,∞)

(c)

We need to find the function fg.

[tex](fg)(x)=f(x)g(x)[/tex]

[tex](fg)(x)=(3-x)(x^2-4)[/tex]

[tex](fg)(x)=3(x^2-4)-x(x^2-4)[/tex]

[tex](fg)(x)=3x^2-12-x^3+4x[/tex]

[tex](fg)(x)=-x^3+3x^2+4x-12[/tex]

It is a polynomial. So,

Domain = (-∞,∞)

(d)

We need to find the function f/g.

[tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]

[tex](\frac{f}{g})(x)=\frac{3-x}{x^2-4}[/tex]

It is a rational function. Domain of a rational function is all real except those values at which the denominator is equal to 0.

Equate denominator equal to 0.

[tex]x^2-4=0[/tex]

[tex]x^2=4[/tex]

Taking square both sides.

[tex]x=\pm \sqrt{4}[/tex]

[tex]x=\pm 2[/tex]

The function is not defined for x=-2 and x=2. So, domain of f/g is all real numbers except -2 and 2.

Domain = (-∞,-2)∪(-2,2)∪(2,∞)

Answer with Step-by-step explanation:

We are given that [tex]f(x)=3x-2,g(x)=x^2-4[/tex]

We have to find the

a.Domain of f+g

Domain of f(x)=([tex]-\infty,\infty[/tex])

Suppose y=g(x)=[tex]x^2-4[/tex]

[tex]x=\sqrt{y+4}[/tex]

Therefore, [tex]g^{-1}(x)=\sqrt{x+4}[/tex]

Domain of [tex]g^{-1}(x)=[-4,\infty)[/tex]

Range of [tex]g^{-1}(x)=[0,\infty)[/tex]

Range of [tex]g^{-1}(x)[/tex]=Domain of g(x)=[tex][0,\infty)[/tex]

Domain of (f+g)(x)=[0,[tex]\infty[/tex])

Because domain of sum of two function is the intersection of domain of given functions.

Similar, domain of (f-g)(x)=[0,[tex]\infty[/tex])

Because domain of difference of two function is the intersection of domain of given functions.

Similarly , domain of fg(x)=[0,[tex]\infty[/tex])

Because domain of product of two function is the intersection of domain of given functions.

[tex]\frac{f}{g}(x)=\frac{3-x}{x^2-4}=\frac{3-x}{(x-2)(x+2)}[/tex]

Function is not define at x=2 and x=-2

Therefore, domain of [tex]\frac{f}{g}(x)[/tex]=R-{-2,2}=[tex](-\infty,-2)\cup(-2,2)\cup(2,\infty)[/tex]