Accelerating charges radiate electromagnetic waves. Calculate the wavelength of radiation produced by a proton of mass mp moving in a circular path perpendicular to a magnetic field of magnitude B. (Use any variable or symbol stated above along with the following as necessary: q and c.)

Respuesta :

Explanation:

Let [tex]m_p[/tex] is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.

The magnetic force is balanced by the centripetal force acting on the proton as :

[tex]\dfrac{mv^2}{r}=qvB[/tex]

r is the radius of path,

[tex]r=\dfrac{mv}{qB}[/tex]

Time period is given by :

[tex]T=\dfrac{2\pi r}{v}[/tex]

[tex]T=\dfrac{2\pi m_p}{qB}[/tex]

Frequency of proton is given by :

[tex]f=\dfrac{1}{T}=\dfrac{qB}{2\pi m_p}[/tex]

The wavelength of radiation is given by :

[tex]\lambda=\dfrac{c}{f}[/tex]

[tex]\lambda=\dfrac{2\pi m_pc}{qB}[/tex]

So, the wavelength of radiation produced by a proton is [tex]\dfrac{2\pi m_pc}{qB}[/tex]. Hence, this is the required solution.