An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate the time required after impact for a puck to lose 10% of its initial speed. Assume air is at 15o C and has a dynamic viscosity of 1.75´10-5 N×s/m2 .

Respuesta :

Answer:

time required after impact for a puck is 2.18 seconds

Explanation:

given data

mass = 30 g = 0.03 kg

diameter = 100 mm = 0.1 m

thick = 0.1 mm = 1 ×[tex]10^{-4}[/tex] m

dynamic viscosity = 1.75 ×[tex]10^{-5}[/tex] Ns/m²

air temperature = 15°C

to find out

time required after impact for a puck to lose 10%

solution

we know velocity varies here 0 to v

we consider here initial velocity = v

so final velocity = 0.9v

so change in velocity is du = v

and clearance dy = h

and shear stress acting on surface is here express as

= µ [tex]\frac{du}{dy}[/tex]

so

= µ  [tex]\frac{v}{h}[/tex]   ............1

put here value

= 1.75×[tex]10^{-5}[/tex] × [tex]\frac{v}{10^{-4}}[/tex]

= 0.175 v

and

area between air and puck is given by

Area = [tex]\frac{\pi }{4} d^{2}[/tex]

area  =  [tex]\frac{\pi }{4} 0.1^{2}[/tex]

area = 7.85 × [tex]\frac{v}{10^{-3}}[/tex] m²

so

force on puck is express as

Force = × area

force = 0.175 v × 7.85 × [tex]10^{-3}[/tex]

force = 1.374 × [tex]10^{-3}[/tex] v    

and now apply newton second law

force = mass × acceleration

- force = [tex]mass \frac{dv}{dt}[/tex]

- 1.374 × [tex]10^{-3}[/tex] v = [tex]0.03 \frac{0.9v - v }{t}[/tex]

t =  [tex] \frac{0.1 v * 0.03}{1.37*10^{-3} v}[/tex]

time = 2.18

so time required after impact for a puck is 2.18 seconds