An unknown radioactive element decays into non-radioactive substances. In 30 days the radioactivity of a sample decreases by 12%. When will a sample of 50 mg decay to 10 mg? Round your final answer to 1 decimal place.

Respuesta :

Answer:

Time to decay will be 377.7 days.

Step-by-step explanation:

Decay of an radioactive element is represented by the formula

[tex]A_{t}=A_{0}e^{-kt}[/tex]

where [tex]A_{t}[/tex] = Amount after t days

[tex]A_{0}[/tex] = Initial amount

t = duration for the decay

k = decay constant

Now we plug in the values in the formula

[tex](1-0.12)x=xe^{-30k}[/tex]

[tex](0.88)x=xe^{-30k}[/tex]

[tex]0.88=e^{-30k}[/tex]

Now we take natural log on both the sides

ln(0.88) = [tex]ln(e)^{-30k}[/tex]

ln(0.88) = -30k(lne)

-30k = -0.1278

k = [tex]\frac{.1278}{30}[/tex]

k = [tex]4.261\times 10^{-3}[/tex]

Now we have to calculate the duration for the decay of 50 mg sample to 10 mg.

[tex]A_{t}=A_{0}e^{-kt}[/tex]

We plug in the values in the formula

10 = 50[tex]e^{-4.261\times 10^{-3}\times t}[/tex]

[tex]e^{-4.261\times 10^{-3}\times t}=\frac{10}{50}[/tex]

[tex]e^{-4.261\times 10^{-3}\times t}=0.2[/tex]

We take (ln) on both the sides

[tex]ln(e^{-4.261\times 10^{-3}\times t})=ln(0.2)[/tex]

[tex]-4.261\times 10^{-3}\times t=-1.6094[/tex]

t = [tex]\frac{1.6094}{4.261\times 10^{-3} }[/tex]

t = 0.37771×10³

t = 377.7 days

Therefore, time for decay will be 377.7 days.