The output of an ac generator connected to an RLC series combination has a frequency of 12 kHz and an amplitude of 28 V. If R = 4.0 Ohms, L = 30 μH, and C = 800 nF, find a. The impedance b. The amplitude for current c. The phase difference between the current and the emf of the generator

Respuesta :

Answer:

(a) 14.88 ohm

(b) 1.88 A

(c)  -74.4°

Explanation:

Vo = 28 V

f = 12 kHz = 12000 Hz

R = 4 ohm

L = 30 micro henry = 30 x 10^-6 H

C = 800 nF = 800 x 10^-9 F

(a)

The inductive reactance,

XL = 2 π f L = 2 x 3.14 x 12000 x 30 x 10^-6 = 2.26  ohm

The capacitive reactance

[tex]X_{c}=\frac{1}{2\pi fC}=\frac{1}{2 \times 3.14 \times 12000 \times 800 \times 10^{-9}}[/tex]

Xc = 16.59 ohm

Let the impedance is Z.

[tex]Z=\sqrt{4^{2}+\left ( 2.26-16.59 \right )^{2}}[/tex]

Z = 14.88 ohm

(b)

The formula for the amplitude of current

[tex]I_{o}=\frac{V_{o}}{Z}=\frac{28}{14.88}[/tex]

Io = 1.88 A

(c)

Let the phase difference is Ф

[tex]tan\phi =\frac{X_{L}-X_{C}}{R}=\frac{2.26-16.59}{4}=-3.5825[/tex]

Ф = -74.4°