Answer:
Option C) |2x| > 6 is correct.
Step-by-step explanation:
Consider the provided solution set:
{x ⎸x > 3 or x < –3}
Now check which options are correct.
Option A) |2x| < 6
[tex]\mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a[/tex]
[tex]-6<2x<6[/tex]
[tex]-3<x<3[/tex]
Thus, the option is incorrect.
Option B) |2x| ≥ 6
[tex]\mathrm{If}\:|u|\:\ge \:a,\:a\:>\:0\:\mathrm{then}\:u\:\le \:-a\:\quad \mathrm{or}\quad \:u\:\ge \:a[/tex]
[tex]2x\le \:-6\quad \mathrm{or}\quad \:2x\ge \:6[/tex]
[tex]2x\le \:-6\quad \mathrm{or}\quad \:2x\ge \:6[/tex]
Thus, the option is incorrect.
Option C) |2x| > 6
[tex]\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad \mathrm{or}\quad \:u\:>\:a[/tex]
[tex]2x<-6\quad \mathrm{or}\quad \:2x>6[/tex]
[tex]x<-3\quad \mathrm{or}\quad \:x>3[/tex]
Thus, the option is correct.
Option C) |2x| ≤ 6
[tex]\mathrm{If}\:|u|\:\le \:a,\:a\:>\:0\:\mathrm{then}\:-a\:\le \:u\:\le \:a[/tex]
[tex]2x\ge \:-6\quad \mathrm{and}\quad \:2x\le \:6[/tex]
[tex]x\ge \:-3\quad \mathrm{and}\quad \:x\le \:3[/tex]
Thus, the option is incorrect.
Hence, Option C) |2x| > 6 is correct.