Respuesta :

Answer:

C (-16, 3)

Step-by-step explanation:

[tex] 12 + 3 \leqslant - 3 \times - 16 \\ 15 \leqslant 48[/tex]

replace x and y

aachen

Answer:

c) (-16,3)

Step-by-step explanation:

Given: inequality [tex]12+\text{y}\leq -3\text{x}[/tex]

To Find: Which ordered pair is part of the solution set of the inequality

Solution:

Simplifying inequality,

[tex]12+\text{y}\leq -3\text{x}[/tex]

[tex]12}\leq -3\text{x}-\text{y[/tex]

now,

putting ordered pairs from options

a) [tex](3,-16)[/tex]

[tex]-3\times3-(-16)[/tex][tex]16-9=7[/tex]

as [tex]7<12[/tex], it does not satisfy inequality

b)  [tex](4,-1)[/tex]

[tex]-3\times4-(-1)[/tex][tex]1-12=-11[/tex]

as [tex]-11<12[/tex], it does not satisfy inequality

c)  [tex](-16,3)[/tex]

[tex]-3\times(-16)-(3)[/tex][tex]48-3=45[/tex]

as [tex]45>12[/tex], it satisfy inequality

d)  [tex](1,4)[/tex]

[tex]-3\times1-(4)[/tex][tex]-3-4=-7[/tex]

as [tex]-7<12[/tex], it does not satisfy inequality

So, from above only option c is part of the solution set of inequality.