Answer:
A 99% confidence interval for the mean breaking strength of blocks produced is [tex][959.987, 1011.213][/tex]
Step-by-step explanation:
A (1 - [tex]\alpha[/tex])x100% confidence interval for the average break in these conditions It is an interval for the population mean with unknown variance and is given by:
[tex][\bar x -T_{(n-1,\frac{\alpha}{2})} \frac{S}{\sqrt{n}}, \bar x +T_{(n-1,\frac{\alpha}{2})} \frac{S}{\sqrt{n}}][/tex]
[tex]\bar X = 985.6psi[/tex]
[tex]n = 9[/tex]
[tex]\alpha = 0.01[/tex]
[tex]T_{(n-1,\frac{\alpha}{2})}=3.355[/tex]
[tex]S = 22.9[/tex]
With this information the interval is determined by:
[tex][985.6 - 3.355\frac{22.9}{\sqrt{9}}, [985.6 - 3.355\frac{22.9}{\sqrt{9}}] = [959.987, 1011.213] [/tex]