Equivalent expressions are expressions with the same value.
The equivalent expression is: (c) [tex]\mathbf{ x^{\frac{2}{3}}}[/tex]
The expression is given as:
[tex]\mathbf{\frac{\sqrt[4]{x^3}}{x^{\frac{1}{12}}}}[/tex]
Rewrite the expression as:
[tex]\mathbf{\frac{\sqrt[4]{x^3}}{x^{\frac{1}{12}}} = \frac{x^{\frac{3}{4}}}{x^{\frac{1}{12}}}}[/tex]
Apply law of indices
[tex]\mathbf{\frac{\sqrt[4]{x^3}}{x^{\frac{1}{12}}} = x^{\frac{3}{4} - \frac{1}{12}}}[/tex]
Take LCM
[tex]\mathbf{\frac{\sqrt[4]{x^3}}{x^{\frac{1}{12}}} = x^{\frac{9-1}{12}}}[/tex]
[tex]\mathbf{\frac{\sqrt[4]{x^3}}{x^{\frac{1}{12}}} = x^{\frac{8}{12}}}[/tex]
Simplify
[tex]\mathbf{\frac{\sqrt[4]{x^3}}{x^{\frac{1}{12}}} = x^{\frac{2}{3}}}[/tex]
Hence, the equivalent expression is: [tex]\mathbf{ x^{\frac{2}{3}}}[/tex]
Read more about equivalent expression at:
https://brainly.com/question/23474758