contestada

Suppose 0 is an angle in the standard position whose terminal side is in Quadrant 1 and sin 0= 84/85. Find the exact values of the five remaining trigonometric functions of 0

Respuesta :

Answer:

Part 1) [tex]cos(\theta)=(\frac{13}{85})[/tex]

Part 2) [tex]tan(\theta)=\frac{84}{13}[/tex]

Part 3) [tex]cot(\theta)=\frac{13}{84}[/tex]

Part 4) [tex]sec(\theta)=\frac{85}{13}[/tex]

Part 5) [tex]csc(\theta)=\frac{85}{84}[/tex]

Step-by-step explanation:

we know that

Angle [tex]\theta[/tex] lie on Quadrant I

so

[tex]sin(\theta)[/tex] is positive

[tex]cos(\theta)[/tex] is positive

[tex]tan(\theta)[/tex] is positive

[tex]cot(\theta)[/tex] is positive

[tex]sec(\theta)[/tex] is positive

[tex]csc(\theta)[/tex] is positive

step 1

Find the value of  [tex]cos(\theta)[/tex]

we have

[tex]sin(\theta)=\frac{84}{85}[/tex]

we know that

[tex]sin^2(\theta)+cos^2(\theta)=1[/tex]

substitute

[tex](\frac{84}{85})^2+cos^2(\theta)=1[/tex]

[tex](\frac{7,056}{7,225})+cos^2(\theta)=1[/tex]

[tex]cos^2(\theta)=1-(\frac{7,056}{7,225})[/tex]

[tex]cos^2(\theta)=(\frac{169}{7,225})[/tex]

[tex]cos(\theta)=(\frac{13}{85})[/tex]

step 2

Find the value of [tex]tan(\theta)[/tex]

we know that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=\frac{84}{85}[/tex]

[tex]cos(\theta)=(\frac{13}{85})[/tex]

substitute

[tex]tan(\theta)=\frac{(84/85)}{(13/85)}[/tex]

[tex]tan(\theta)=\frac{84}{13}[/tex]

step 3

Find the value of [tex]cot(\theta)[/tex]

we know that

[tex]cot(\theta)=\frac{1}{tan(\theta)}[/tex]

we have

[tex]tan(\theta)=\frac{84}{13}[/tex]

therefore

[tex]cot(\theta)=\frac{13}{84}[/tex]

step 4

Find the value of [tex]sec(\theta)[/tex]

we know that

[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]

we have

[tex]cos(\theta)=(\frac{13}{85})[/tex]

therefore

[tex]sec(\theta)=\frac{85}{13}[/tex]

step 5

Find the value of [tex]csc(\theta)[/tex]

we know that

[tex]csc(\theta)=\frac{1}{sin(\theta)}[/tex]

we have

[tex]sin(\theta)=\frac{84}{85}[/tex]

therefore

[tex]csc(\theta)=\frac{85}{84}[/tex]