Answer with Step-by-step explanation:
We are given that six integers 1,2,3,4,5 and 6.
We are given that sample space
C={1,2,3,4,5,6}
Probability of each element=[tex]\frac{1}{6}[/tex]
We have to find that [tex]P(C_1),P(C_2),P(C_1\cap C_2) \;and\; P(C_1\cup C_2)[/tex]
Total number of elements=6
[tex]C_1[/tex]={1,2,3,4}
Number of elements in [tex]C_1[/tex]=4
[tex]P(E)=\frac{number\;of\;favorable \;cases}{Total;number \;of\;cases}[/tex]
Using the formula
[tex]P(C_1)=\frac{4}{6}=\frac{2}{3}[/tex]
[tex]C_2[/tex]={3,4,5,6}
Number of elements in [tex]C_2[/tex]=4
[tex]P(C_2)=\frac{4}{6}=\frac{2}{3}[/tex]
[tex]C_1\cap C_2[/tex]={3,4}
Number of elements in [tex](C_1\cap C_2)=2[/tex]
[tex]P(C_1\cap C_2)=\frac{2}{6}=\frac{1}{3}[/tex]
[tex]C_1\cup C_2=[/tex]{1,2,3,4,5,6}
[tex]P(C_1\cup C_2)=\frac{6}{6}=1[/tex]